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Abstract

Video question answering (VideoQA) is a
rapidly evolving topic that bridges the inter-
section between visual, audio and text domains
with an added complexity of time. Though
there has been rapid improvement in vision-
language models, VideoQA still underperforms
humans baselines. To address this, our pa-
per studies methods for improving representa-
tions VideoQA. More specifically, our research
focuses on the following questions: 1) How
useful are video captions in VideoQA tasks?;
and 2) How can we leverage the knowledge
of frames being close together in time to im-
prove the representations? Through experi-
ments over AGQA, we show that with well gen-
erated captions, our proposed Video Captioning
for VideoQA (VC-VQA) approach is beneficial
to downstream performance over AGQA and
improves upon previous baselines. In addition,
leveraging similar representations for clips that
occur close together in a video improves per-
formance for questions that require knowledge
of the timing of an action.

1 Introduction

Video question answering (VideoQA) is a rapidly
evolving topic that bridges the intersection between
visual, audio and text domains with an added com-
plexity of time. VideoQA is interesting in the
aspect of combining dense image representations
with a temporal dimension, in which the images
shift slightly from one instance to the next. In re-
cent years there have been major breakthroughs
in individual modalities with popular models such
as AlexNET (Krizhevsky et al., 2012) in the vi-
sual domain and BERT (Devlin et al., 2019) in
the text domain. Similarly, there have been vast
improvements in the VideoQA task, however, cur-
rent models still significantly underperform human
comparisons (Grunde-McLaughlin et al., 2021) and
is still largely unexplored (Zhong et al., 2022).

At a high level, VideoQA seeks to, given a
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question, ¢ and a video clip v, predict the correct
answer, a* (Zhong et al., 2022). Traditional ap-
proaches to VideoQA consist of various compo-
nents which encode the video, the question, and the
cross-modal interaction of the two (Zhong et al.,
2022). However, given the success of transformer
models across text-based question answering tasks,
the use of textual descriptions of videos has not
been explored in depth in the context of VideoQA
(Patel et al., 2021). This angle for VideoQA is
particularly interesting as it allows us to convert
the VideoQA task to a text-based QA task, where
pre-trained language transformer models excel (i.e.,
(Devlin et al., 2019), (Raffel et al., 2020), (Lewis
etal., 2019)). To this end, our paper proposes Video
Captioning for VideoQA (VC-VQA), a two-step
approach which first generates captions for videos
and then makes use of a pre-trained language mod-
els for question answering.

We study VC-VQA across two setups: 1) There
is access to human written train and test video
captions for our question-answering model Perfect
world; and 2) The question answering model has
access to human written captions for training, but
need to we need to generate captions for test videos
Semi-Perfect World.

In addition to VC-VQA, we also explore the
impact of temporal reasoning on VideoQA. We hy-
pothesize that the structure of video data can be
leveraged to create a computational process with
stronger parallels to human cognitive processes.
Recent work in visual question answering has ex-
plored aspects of reasoning, in which multiple parts
of an image have to be properly understood in order
to answer questions (Amizadeh et al., 2020). Thus,
we believe that the temporal aspect of frames can be
better incorporated to improve upon that. Broadly
speaking, from human reasoning, we can observe
that time is a necessary aspect that allows human
reasoning to occur. There is also theoretical con-
cepts of System I and System 2 reasoning, where



System 1 reasoning refers to fast cognitive abilities
such as object recognition, and System 2 refers to
cognitive processes that are slower (Susskind et al.,
2021). While there has been extensive research
on using time dependent modalities such as audio
and video data, there has been little exploration of
how this effects the representations within the mod-
els. As such, we aim to explore how the temporal
effects that occur in VideoQA.

In summary, we make the following contribu-
tions: 1) We study if textual descriptions of videos
can be beneficial to downstream performance over
AGQA and improve upon previous baselines. 2)
We study the effectiveness of leveraging similar
representations that occur close together in a video
for question answering.

Our paper is organized as follows. In section 2
we go over related work. In section 3, we overview
the AGQA dataset. In section 4, we describe the
details of our proposed approach. In section 5, we
discuss our experimental setup. Section 6 discusses
the experimental results. Section 6 concludes our
study.

2 Related Work

Our work is related to video question answering,
text-based question answering, automatic video
captioning, and temporal patterns.

VideoQA In the recent years, there have been
an increasing number of models and datasets that
have been aimed at addressing this task. Multiple
datasets have been proposed, where often videos
are either taken from previous datasets (Ji et al.,
2020), or scraped from online sources (Li et al.,
2020; Jang et al.; Xu et al., 2016). Questions are
then either manually created or automatically gener-
ated based on previous labels . Current state of the
art models are trained over large datasets such as
HowTo100M, with up to 100M video question an-
swer pairs (Miech et al., 2019). However, a critique
of them is that they can ask about information that
is present outside of a video (Grunde-McLaughlin
et al., 2021). As such, our work focuses on the
AGQA dataset, where question require an under-
standing of the videos to be answered (Grunde-
McLaughlin et al., 2021).

HCRN is a popular videoQA model that has
multiple Conditional Relational Networks (CRN)s.
By combining these modules, it has achieved state
of the art performance performance on multiple
benchmarks including TGIF-QA and MSRVTT-

QA datasets (Le et al., 2020). The modules condi-
tion image features on questions and motion fea-
tures (I3D video features) to extract more relevant
information from the input features. The model
stacks one such layer on top of another, where the
later layer predicts the answer to a question. This
way, contextual information form the question and
motion features can be combined with appearance
features from the videos in multiple places within
the model (Le et al., 2020). A skeleton of the model
can be observed in Fig. 1.

Video Captioning The goal of video captioning
is to generate natural language descriptions which
describe the content of a video (Aafaq et al., 2019).
Video Captioning has many interesting downstream
applications to tasks such as video retrieval or video
recommendation.

In our work, video captioning is used as a
method to leverage text modality for VideoQA.
More specifically we use a video captioning model
to directly generate a description of a video for
input into text-based question answering system.
The work in video captioning most related to ours
is BMT (Iashin and Rahtu, 2020) and ClipCap
(Mokady et al., 2021).

BMT is a dense video captioning model which
utilizes both audio and visual features to detects
events in a video then describes them (Krishna
et al., 2017). BMT model consists of two modules:
event proposal generation module and a captioning
module. The event proposal generation module
is a bi-modal transformer model that uses video
and audio features to generate a set of proposals
(Iashin and Rahtu, 2020) The captioning module
is a bi-modal encoder-decoder transformer model
which outputs a caption for each "proposal" from
the event proposal generation module. The videos
are encoded using pre-trained 13D features (Car-
reira and Zisserman, 2017) and pre-trained VGGish
features (Hershey et al., 2017).

ClipCap is an image captioning model which
leverages CLIP encodings (Radford et al., 2021) as
a prefix for generating captions with GPT-2 through
the use of a mapping network (Mokady et al., 2021).
We use a similar approach to expand upon this for
video captioning by leveraging video encodings
rather than CLIP image encodings.

Text-based Question Answering Our work is
most related to the closed-book question answering
task, in which given a question and a context para-
graph, models are trained to predict the span of text
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Figure 1: The figure highlights our main contributions. We propose a method to enforce more consistent representa-
tions in video, and utilize the text modality through captions for the video QA task.

which contain the answer (Roberts et al., 2020).

In particular, our approach leverages out-of-the-
box pre-trained language models (PLMs) that fol-
low the standard pre-train then fine-tune recipe.
Traditionally for question-answering, PLMs are
first pre-trained on large text corpora with tasks
such as masked-language modeling followed by
fine-tuning over (question, context, answer) triples.
Popular PLM architectures consist of encoder mod-
els similar to BERT (Devlin et al., 2019) which are
trained to predict the span of tokens which con-
tain the answer or encoder-decoder models like T5
(Raffel et al., 2020) or BART (Lewis et al., 2019)
which directly generate the answer.

Temporal Patterns Recently, there has been in-
creased attention devoted to temporal relations
that occur in VideoQA. Recently, Spatio-temporal
Question Answering datasets have become more
popular, evaluating the ability of models to an-
swer questions about both spacial relationships and
temporal relationships that are present within a
video. These datasets focus on questions that re-
quire knowledge from different time steps within a
video, evaluating the ability of a model to collect
information across different time horizons. Such
questions ask about recognizing actions and tem-
poral relationships such as whether something hap-
pened before or after smoothing else, or whether
one action was longer than another action. While
there have been many related datasets that aim to

evaluate temporal relationships, some approaches
also aim to specifically temporal information.

Goyal et al. (2020) apply the concept of temporal
coherence to the image classification task, where
they attend more to frames that do not change, us-
ing the by looking at the similarity of temporaly
proximal frames. Attention for a frame is scaled
by the similarity between the frame’s attention vec-
tor and the attention vectors of its neighbors. This
makes the shift in attention smooth from one frame
to the next, making it more consistent.

Yu et al. (2021) force similarity amongst similar
video representations that have a slight temporal
offset. That is, they sample frames from a video,
and compare that sample with a similar sample
taken with a slight delay. They compare these rep-
resentation, giving more weight to those that are
similar. As representations that appear at neigh-
boring times and are similar suggest more reliable
information, they are given more weight when mak-
ing predictions for the answer.

These prior works are able to leverage informa-
tion about similar representations from neighboring
time steps to improve video question answering.
As such, we believe that we can enforce similar
representations to improve the task of videoga on
the AGQA dataset.



3 AGQA Dataset (Grunde-McLaughlin
et al., 2021)

The AGQA dataset is a question answering dataset
based on the action genome with questions that
offers insight about the ‘reasoning’ that a model is
able to perform.

The videos are collected from the Charades
dataset (Sigurdsson et al., 2016), in which 9848
videos of indoor activities were collected. People
were asked to do a specific sequence of actions, and
recorded videos of themselves doing the actions.
For example one video is "A person [taking] a drink
of water, then [closing] a cabinet door, then [walk-
ing] out of the room". The videos have an average
length of 30 seconds, and the videos are limited to
157 action classes (Sigurdsson et al., 2016). Each
video is annotated with the multiple forms for tex-
tual description. The first is a script, which is the
task the person was provided with and requested to
act out in the creation of the video. The second is a
description, which is a sentence description of the
video written by workers who watched the video
and described what they saw.

Next, the Action Genome created temporal scene
graphs based on the videos, where temporal scene
graphs are generated by annotating five frames
through the duration of each action within a video
(Ji et al., 2020). Based on the scene graphs, the
AGQA dataset creates 3.9 million question pairs,
with 174 unique answers, where the question types
and answers are relatively balanced. They do so
by creating question templates based on the tempo-
ral scene graphs, and a program that generates the
answer to the question based on the scene graph
(Grunde-McLaughlin et al., 2021).

The questions in AGQA focus on video under-
standing, requiring an the ability to recognize con-
cepts that occur in the video, actions, and relation-
ships. Moreso, the questions often require com-
parisons between actions and objects, asking about
which action was done first, or which action was
done for a longer period of time. For each question,
they differentiate between the question reasoning
type, semantics, and structure. Question semantics
refers to what the question is asking about, rea-
soning type refers to the concepts that need to be
used to answer a question, and question structure
refers to the way in which they ask about the con-
cept. This allows the models to be evaluated on
the ability to pick up different concepts and answer
different question types, providing a more infor-

mative evaluation metric about different reasoning
abilities.

4 Approaches

In this section, we first outline our proposed Video
Captioning for VideoQA (VC-VQA) approach.
Then, we describe our methodology for applying a
temporal loss.

41 VC-VQA

Unlike previous works, which directly utilize the
video clip as input to a question answering architec-
ture, our proposed model seeks to leverage textual
representations in order to improve the video ques-
tion answering task. Current language models such
as T5 (Raffel et al., 2020) or BERT (Devlin et al.,
2019) are pre-trained on large text corpora, and
as a result leverage knowledge extracted from tex-
tual representations. Our proposed method seeks
to gain an understanding the role that textual rep-
resentations can play in the context of video ques-
tion answering. First, we evaluate the ability of
text based models to answer questions based off
of human curated captions of the video. Then we
explore off-the-shelf video captioning models to
generate useful captions for the QA downstream
task. Lastly, we evaluate the ability to generate cap-
tions using models fine-tuned on captions for the
downsteram task of VideoQA. Overall, VC-VQA
consists of a two-step pipeline that first generates
captions for videos and then makes use of a pre-
trained language model for question answering as
seen in Fig 1.

Video Captioning Module At a high level, the
video captioning component of VC-VQA can be
any off-the-shelf model which takes as input a
video clip, and outputs a textual description of the
video. However, to leverage the benefits of pre-
training in language generation models, we train
a GPT-2 (Radford et al., 2019) model for video
captioning. This approach is similar to a clip cap
model proposed by (Mokady et al., 2021). There,
image features were embeded into the same space
as textual embeddings, and then passed into GPT-2.
In our case GPT-2 is fine-tuned to generate captions
given weights from image features.

Question Answering Module For the question
answering model, we fine tune a text-to-text trans-
former (T5) model for question answering. Given
a dataset of (Question, Caption, Answer) triples,
TS5 takes as input a concatenation of the question



and caption and outputs an answer. The following
is the input to T5:

Question: g Context: ¢ (D)

where ¢ is the question and c is the video caption.

4.2 Temporal Reasoning

In order to leverage temporal coherence (the con-
cept that neighboring representations should be
similar) as a way of regularizing to HCRN, we
aim penalize the change in representations that oc-
curs within the middle layers of the network. This
way, the network will be able to learn represen-
tations that remain consistent thought a duration
of a video. For example, if a person is doing a
continuous action, that would get stored within
the representation instead of individual positions
through which a person transitions. We hope that
the penalty will be weak enough for the repre-
sentation to change throughout the clips of the
video to reflect the specifics of each frame, yet
strong enough that some information that is con-
sistent throughout multiple consecutive frames is
extracted. This way, the representation is able to
better capture the events, while preserving details
from each frame. Since all of the videos within the
AGQA data set are single clip videos, we do not
worry about sharp transitions, and while multiple
videos have fast transitions, we hope that the metric
will be robust to these transitions. We apply this
penalty to vectors that are returned from the first
layer of CRN modules.

5 Experimental Setup

In this section we first overview the research ques-
tions that are aimed to be answered by our experi-
ments. Then we discuss data and implementation
details for VC-VQA and incorporation of temporal
loss.

5.1 Research Questions

RQ1: How useful are video captions in VideoQA
tasks? If so, can video captioning models generate
captions that can have similar success to human-
generated captions?

RQ2: How can we leverage the knowledge of
frames being close together in time to improve
the representations?

5.2 Model Training

TS We fine-tune a T5-base model (220M parame-
ters) for approximately 6000 steps (2 epochs) using
the Adafactor optimizer with a learning rate of 3e-
4, batch size of 256, and weight decay of 5e-5. We
used a maximum of 512 input tokens and 64 output
tokens. We select the epoch with the lowest evalua-
tion loss as the final model for inference. TS was
implemented using the huggingface transformers
library (Wolf et al., 2019). Training and inference
was done on 1 NVIDIA GeForce 2080 Ti GPU and
takes approximately 7 hours.

GPT-2 We fine-tune a GPT-2 model (117M pa-
rameters) for video captioning. Given GPT-2 is a
transformer model that is used to generate text, we
pose the question of whether video features can
prompt GPT-2 to generate useful video captions.
Given the appearance features have dimensions of
2048 — and GPT-2 has dimensions of 768 — we
slice the appearance features at each frame into
three consecutive inputs for GPT-2. We also exper-
iment with an alternative approach to project the
2048 dim image feature into 768 dimensions. Next,
we unfreeze the first 3 layers of GPT-2, and keep
the rest of the layers frozen. This way, the output
does not overfit and is able to pick up more nuances
from the input visual features. We train this for 10
epochs using the huggingface transformers library
(Wolf et al., 2019) on a 1 NVIDIA GeForce 2080
Ti GPU and takes approximately 7 hours and takes
approximately 10 hours.

BMT (Iashin and Rahtu, 2020) For a video cap-
tioning baseline to compare with GPT-2, we fine-
tune BMT (60M parameters) over the AGQA train-
ing videos. Although BMT utilizes both audio and
visual features, we omit the audio features in our
implementation, as the majority of videos in Cha-
rades do not include audio. In addition, given we
have only one caption per video, we freeze the
proposal generator, and only train the captioning
module. We train the BMT captioning module for
30 epochs with the default parameters from (Iashin
and Rahtu, 2020) and select the epoch with the
lowest evaluation loss. Training and inference was
done on 1 NVIDIA GeForce 2080 Ti GPU and
takes approximately 2 hours.

5.3 Temporal Loss

Our last approach aims to leverage information
about proximal representation to improve the
performance of HCRN (Le et al., 2020). HCRN is



a 500 MB model, and takes 48 GPU hours to train
on the AGQA dataset. To make representations that
come consecutively more similar, we experiment
with different loss functions that penalize side by
side representations changing. To calculate the
loss, we apply the frobenius, neuclear, and p2
matrix norms. The Frobenius (pl) matrix norm
penalizes all changes in representations equally.
This way, any change in the representation gets
penalized. On the other hand, the Nuclear Matrix
norm penalizes the sum of the singular values for
the matrix. That is, it penalizes the total amount
by which a matrix stretches, resulting in larger
penalties over dimensions that stretch further.
Lastly, the p2 norm penalizes all values where
that change using the sum of squares of all of the
elements (Horn and Johnson, 2012). This penalizes
large changes in values from one time step to the
next. When combining the loss from changing
representations with the cross entropy loss from
answer predictions using different weights for the
loss. This is expressed as follows:

ﬁtotal = Ecrossentropy + aﬁtemporal

In order to evalute the performance we first train
the model with different model weights and regular-
izations from scratch, sampling from weigts of 1e-2
to le-5 and training for 2 epochs each. Next, we
train a model using no regularization for 7 epochs,
and then train three models models with an p2 norm
for 6500 more iterations (.1 epoch). We evaluate
their performance on the different AGQA splits,
and use the 1 sample t test to compare the final
accuracy distributions with the original model per-
formance.

Having set up the experiments, we disucss the
results next.

6 Results and Analysis

6.1 RQ1: Do video-captioning models help
VideoQA?

Table 2 reports the accuracy of various setups of
VC-VQA comparatively to reported baselines from
AGQA (Grunde-McLaughlin et al., 2021). Com-
paring VC-VQA to the reported model baselines,
it can be seen that performance can be improved
by 20% overall through the use of human written
captions. These findings confirm our hypothesis
that given we provide a question-answering model
with well written descriptions of videos (captions),
performance can improve for VideoQA tasks.

Comparison of VC-VQA with human written
captions versus automatically generated captions
shows that generated captions can still outperform
previous VideoQA baselines over AGQA, although
there is still room for improvement compared to
human written captions. Comparing VC-VQA over
generated captions to the baseline shows that the
improvement of VC-VQA is most evident over
open-answer questions, which have many possible
answers (Grunde-McLaughlin et al., 2021). This
shows the benefit of treating VideoQA as a text
question answering task, as the question-answering
module of VC-VQA is better able to utilize tex-
tual representations of videos versus baselines that
directly use video features. In addition, we hy-
pothesize this is because our VC-VQA question
answering module is able to leverage the knowl-
edge extracted from pre-trained language model
textual representations, which excel in text-based
question answering.

To gain a better understanding of the drop in
performance compared to performance over hu-
man written captions, Table 3 shows examples of
captions generated by humans, BMT, and GPT-2.
Interestingly, BMT is able to capture the action the
person is performing, but is struggling to classify
the object from the video. (I.e., in row 1, BMT is
able to notice the person picks something up but
predicts it is a "bag" versus a "pillow"). On the
other hand, GPT-2 does a much better job of cap-
turing the objects and actions present in the video.
Row 3 shows an interesting example of where the
human caption doesn’t explicitly mention the ob-
ject being held by the person, but both BMT and
GPT-2 make predictions on what the object is.

To quantify this analysis, we compute the ME-
TEOR (Banerjee and Lavie, 2005) score of the
generated captions to the human written captions.
As we can see GPT-2 captions has a four point im-
provement in METEOR, which further confirms
our findings that GPT-2 better captures unigram
precision and recall compared to the human de-
scription versus BMT.

6.2 RQ2: Leveraging knowledge of frames to
improve video representations

In order to better understand relationships between
different representations within the HCRN model,
we calculate the euclidean distances amongst video
appearance features, and amongst the activations
in the HCRN model.



weight of loss ()
01 le™3 [1le7® [ 1e™®
Norm | forb (pl) | 44.77 | 44.88 | 46.99 | 47.14
nuc 44.50 | 46.60 | 47.05 | 47.26
p2 46.3 | 47.79 | 46.79 | 47.21
Table 1: The table presents the performance of HCRN when different forms of regularization are applied to the
model.
AGQA
Method Binary Open  All
Baselines
Human 86.65 83.53 86.02
PSAC 54.19 27.20 40.40
HME 59.77 36.23 47.74
HCRN 58.11  37.18 47.42
Human Written Captions
VC-VQA 67.85 6720 67.26
Automatically Generated Captions
VC-VQA (w/GPT-2) 5890 52.69 55.26
VC-VQA (w/BMT) 56.75 39.66 47.58

Table 2: Results on AGQA
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Figure 2: The figure shows the how the representations
change from one clip to the next.

From Figures 2 and 3, we can visualize how
much the representations change as a function of
time. We observe that for appearance (ResNet) fea-
tures that were fed into the model, there is minimal
variation between how much features change be-
tween one clip and five clips. However, looking
at the change in representations in Fig. 3, we can
see that there is a more noticeable change in the
change of representation features, as the average
grows from an average p2 norm of 100 for image
features 1 segment away to 130 when the image
features are 5 segments away. We can also observe
that the activation norm is much smaller for activa-

Histogram of the change in activations
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Figure 3: The figure shows how the HCRN activations
change from one HCRN representation to the next.

tions compared to appearance features. This sug-
gests that representations change more significantly
within the HCRN model compared to the change
that occurs in the original image features. Using
this technique, we can note that HCRN is able to ex-
tract meaningful information from image features.
Similarly, the figures suggest the lack of granular-
ity between the image features/representations as
there is little observed change between one and 5
video frames.

Next, we evaluated how adding a loss to how
much a model changes can affect the performance
of the model. From Table 1, we observe that when



Ground Truth BMT GPT-2

A person looks under a mattress
and pats the bed. This person
picks up a pillow, and throws it on the bed

A person is standing on the stairs
holding a bag and a towel . the person then
picks up a bag and throws it on the floor .

A person awakens on the edge of the
living room. The person picks up
a pillow and throws it on the bed.

A person is walking into a closet
and begins looking through things,
they then take a picture
from a shelf and leave.

A person is looking out the window,
they then go to the window

and look out the window. A person walks out of the closet.

A person walks down the stairs
holding something , and then opens
a door and walks through it.

A person is walking up the stairs
and looking at a phone while another person is
walking down the stairs .

A person is walking down the stairs
holding a camera. The person then
opens a door and walks through it.

Table 3: Examples of generated captions versus human written captions

Baseline | L2-loss | p-val

Method || METEOR Total 47.2 47.62 27

BMT 17.01 Binary 54.8 54.7 .88

GPT-2 21.95 Open 40.8 41.7 A7

) Structural: Verify 67.3 67.4 .82

Table 4: METEOR score for generated captions over Structural: Query 208 417 17
Charades test set

Structural: Choose | 42.2 414 .29

Structural: Compare | 54.9 55.6 .06

a larger weight that gets applied to the time-based Semantic: Object 43.6 44 31

loss, the performance of the model decreases. This Semantic: Relation | 64.4 64.4 S0

remains consistent for the different kinds of norms Semantic: Action 56.7 574 05

that get applied. We can also observe that in most
cases, the p2 norm outperforms the Nuclear and
Frobenius norms, which suggests that rather than
the change of the whole representation (which is
reflected in the nuclear norm), the change in in-
dividual components of the representation carries
more meaningful information.

Lastly, we add the p2 norm with the loss, and
train the model for 6500 iterations (.1 epoch) to
evaluate how the norm affects the questions that
the model can answer. We can observe a slight
improvement in performance, however the p value
still remains relatively large (.27). We can observe
the most improvement in the questions where the
structure requires a comparison between two ac-
tions (1.3 % improvement with a p value of .06),
and when the question semantics ask about an Ac-
tion (1.2 % improvement with a p value of .05).
The results can be observed in Table 5.

Looking at Semantic: Action and Structural:
Compare questions, we observe the types of ques-
tions that the baseline model gets wrong and the
new model gets correct. We find that most of the
questions are ones that ask to compare whether an

Table 5: These experiments provide a comparison be-
tween the baseline model and a model that applied a
loss to changing representations at different time steps

action happened ’before or after’ another action.
While comparison and action questions had mul-
tiple types of comparisons and actions types (for
example comparing the duration that something
occurred, or comparing what object an action was
applied to) most of the questions that the model
was able to answer correctly asked about whether
an event happened before or after a different event.
These types of questions were both classified as
Semantic: Action, and Structural: Compare. This
suggests that adding a p2 temporal loss is able to
improve the performance on questions that require
a model to order events.

7 Discussion and Future Work

In this paper, we examine different methods for
improving representations for VideoQA. VideoQA
is particularly interesting as it combines dense im-
age representations in a temporal sequence and has



multiple applications for information retrieval and
recommendation systems.

To this end, we propose VC-VQA, a method that
uses a two-step approach to first generates captions
for videos and then makes use of a pre-trained lan-
guage model for question answering. Through a
variety of experiments with VC-VQA, we find that
well generated captions provide an improvement to
downstream performance over AGQA and signifi-
cantly improves upon previous baselines, by up to
20%. We find this to also be the case with automat-
ically generated captions, as we find up an 8% over
previous AGQA baselines.

In addition, we study the effectiveness of leverag-
ing similar representations that occur close together
in a video for question answering. We find that
these models are able to improve on the ordering
of actions.

While VC-VQA outperforms previous baselines,
we leave open the problem of zero-shot video cap-
tioning. Our approach assumes that — at minimum
— the video collection contains human written cap-
tions for the training set. However, for cases in
which a video collection has no human written
captions, how VC-VQA performs remains an open
question. In addition we chose to leverage temporal
information on the HCRN model due to its success-
ful previous performance on VideoQA, while these
approaches might be more effectively applied to
other model structures such as RNNs.

For future work, we will investigate how VC-
VQA will perform in settings where training cap-
tions might not be available.

7.1 Social Implications

While AGQA splits the data based on question
type, there are still many biases that remain in the
dataset. First, the videos are collected by Amazon
Turks, which is a select population that has access
to recording devices and is interested in recording
videos. As such, there could exist a gender and
racial imbalance within the data set. As the videos
are not categorized by race and gender, it becomes
difficult to evaluate potential biases that may exist
within the question answering system.

Another ethical implication of this work is the
impact that it will have. Currently the most com-
mon application of such systems are in search en-
gines, where videos can be retrieved to answer
questions. As such, this direction of work has the
most impact on individuals that are able to create

high quality videos to get them retrieved and could
have harmful effects to individuals who cannot do
as such. Lastly, there can be possible unethical uses
of such systems, for example, being used to track
members of a certain group.
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